196 research outputs found

    Confined granular packings: structure, stress, and forces

    Full text link
    The structure and stresses of static granular packs in cylindrical containers are studied using large-scale discrete element molecular dynamics simulations in three dimensions. We generate packings by both pouring and sedimentation and examine how the final state depends on the method of construction. The vertical stress becomes depth-independent for deep piles and we compare these stress depth-profiles to the classical Janssen theory. The majority of the tangential forces for particle-wall contacts are found to be close to the Coulomb failure criterion, in agreement with the theory of Janssen, while particle-particle contacts in the bulk are far from the Coulomb criterion. In addition, we show that a linear hydrostatic-like region at the top of the packings unexplained by the Janssen theory arises because most of the particle-wall tangential forces in this region are far from the Coulomb yield criterion. The distributions of particle-particle and particle-wall contact forces P(f)P(f) exhibit exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references, fixed typo

    Statistics of the contact network in frictional and frictionless granular packings

    Get PDF
    Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data. Here f equivalent to F/F-bar is the contact force F normalized by the average value F-bar. P(f) exhibits exponential-like decay at large forces, a plateau/peak near f = 1, with additional features at forces smaller than the average that depend on mu. Computations of the force-force spatial distribution function and the contact point radial distribution function indicate that correlations between forces are only weakly dependent on friction and decay rapidly beyond approximately three particle diameters. Distributions of the particle-particle contact angles show that the contact network is not isotropic and only weakly dependent on friction. High force-bearing structures, or force chains, do not play a dominant role in these three dimensional, unloaded packings.Comment: 11 pages, 13 figures, submitted to PR

    Geometry of Frictionless and Frictional Sphere Packings

    Get PDF
    We study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which we vary particle hardness, friction coefficient, and coefficient of restitution. Although frictionless packings of hard-spheres are always isostatic (with six contacts) regardless of construction history and restitution coefficient, frictional packings achieve a multitude of hyperstatic packings that depend on system parameters and construction history. Instead of immediately dropping to four, the coordination number reduces smoothly from z=6z=6 as the friction coefficient μ\mu between two particles is increased.Comment: 6 pages, 9 figures, submitted to Phys. Rev.

    Stability of Monomer-Dimer Piles

    Full text link
    We measure how strong, localized contact adhesion between grains affects the maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer grains, each consisting of two spheres that have been rigidly bonded together, with simple spherical monomer grains, we create sandpiles that contain strong localized adhesion between a given particle and at most one of its neighbors. We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the surface, which reduces the density of monomers that need to be accomodated in the most stable surface traps. A full characterization and geometrical stability analysis of surface traps provides a good quantitative agreement between experiment and theory over a wide range of nu_d, without any fitting parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR

    From crystal to amorphopus: a novel route towards unjamming in soft disk packings

    Full text link
    It is presented a numerical study on the unjamming packing fraction of bi- and polydisperse disk packings, which are generated through compression of a monodisperse crystal. In bidisperse systems, a fraction f_+ = 40% up to 80% of the total number of particles have their radii increased by \Delta R, while the rest has their radii decreased by the same amount. Polydisperse packings are prepared by changing all particle radii according to a uniform distribution in the range [-\Delta R,\Delta R]. The results indicate that the critical packing fraction is never larger than the value for the initial monodisperse crystal, \phi = \pi/12, and that the lowest value achieved is approximately the one for random close packing. These results are seen as a consequence of the interplay between the increase in small-small particle contacts and the local crystalline order provided by the large-large particle contacts.Comment: two columns, 14 pages, 12 figures, accepted for publication in Eur. Phys. J.

    Partially fluidized shear granular flows: Continuum theory and MD simulations

    Full text link
    The continuum theory of partially fluidized shear granular flows is tested and calibrated using two dimensional soft particle molecular dynamics simulations. The theory is based on the relaxational dynamics of the order parameter that describes the transition between static and flowing regimes of granular material. We define the order parameter as a fraction of static contacts among all contacts between particles. We also propose and verify by direct simulations the constitutive relation based on the splitting of the shear stress tensor into a``fluid part'' proportional to the strain rate tensor, and a remaining ``solid part''. The ratio of these two parts is a function of the order parameter. The rheology of the fluid component agrees well with the kinetic theory of granular fluids even in the dense regime. Based on the hysteretic bifurcation diagram for a thin shear granular layer obtained in simulations, we construct the ``free energy'' for the order parameter. The theory calibrated using numerical experiments with the thin granular layer is applied to the surface-driven stationary two dimensional granular flows in a thick granular layer under gravity.Comment: 20 pages, 19 figures, submitted to Phys. Rev.

    Granular packings with moving side walls

    Full text link
    The effects of movement of the side walls of a confined granular packing are studied by discrete element, molecular dynamics simulations. The dynamical evolution of the stress is studied as a function of wall movement both in the direction of gravity as well as opposite to it. For all wall velocities explored, the stress in the final state of the system after wall movement is fundamentally different from the original state obtained by pouring particles into the container and letting them settle under the influence of gravity. The original packing possesses a hydrostatic-like region at the top of the container which crosses over to a depth-independent stress. As the walls are moved in the direction opposite to gravity, the saturation stress first reaches a minimum value independent of the wall velocity, then increases to a steady-state value dependent on the wall-velocity. After wall movement ceases and the packing reaches equilibrium, the stress profile fits the classic Janssen form for high wall velocities, while it has some deviations for low wall velocities. The wall movement greatly increases the number of particle-wall and particle-particle forces at the Coulomb criterion. Varying the wall velocity has only small effects on the particle structure of the final packing so long as the walls travel a similar distance.Comment: 11 pages, 10 figures, some figures in colo

    Stress response inside perturbed particle assemblies

    Full text link
    The effect of structural disorder on the stress response inside three dimensional particle assemblies is studied using computer simulations of frictionless sphere packings. Upon applying a localised, perturbative force within the packings, the resulting {\it Green's} function response is mapped inside the different assemblies, thus providing an explicit view as to how the imposed perturbation is transmitted through the packing. In weakly disordered arrays, the resulting transmission of forces is of the double-peak variety, but with peak widths scaling linearly with distance from the source of the perturbation. This behaviour is consistent with an anisotropic elasticity response profile. Increasing the disorder distorts the response function until a single-peak response is obtained for fully disordered packings consistent with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte

    Effect of boundaries on the force distributions in granular media

    Get PDF
    The effect of boundaries on the force distributions in granular media is illustrated by simulations of 2D packings of frictionless, Hertzian spheres. To elucidate discrepancies between experimental observations and theoretical predictions, we distinguish between the weight distribution {\cal P} (w) measured in experiments and analyzed in the q-model, and the distribution of interparticle forces P(f). The latter one is robust, while {\cal P}(w) can be obtained once the local packing geometry and P(f) are known. By manipulating the (boundary) geometry, we show that {\cal P}(w) can be varied drastically.Comment: 4 pages, 4 figure

    Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder

    Full text link
    We have studied how 2- and 3- dimensional systems made up of particles interacting with finite range, repulsive potentials jam (i.e., develop a yield stress in a disordered state) at zero temperature and applied stress. For each configuration, there is a unique jamming threshold, Ï•c\phi_c, at which particles can no longer avoid each other and the bulk and shear moduli simultaneously become non-zero. The distribution of Ï•c\phi_c values becomes narrower as the system size increases, so that essentially all configurations jam at the same Ï•\phi in the thermodynamic limit. This packing fraction corresponds to the previously measured value for random close-packing. In fact, our results provide a well-defined meaning for "random close-packing" in terms of the fraction of all phase space with inherent structures that jam. The jamming threshold, Point J, occurring at zero temperature and applied stress and at the random close-packing density, has properties reminiscent of an ordinary critical point. As Point J is approached from higher packing fractions, power-law scaling is found for many quantities. Moreover, near Point J, certain quantities no longer self-average, suggesting the existence of a length scale that diverges at J. However, Point J also differs from an ordinary critical point: the scaling exponents do not depend on dimension but do depend on the interparticle potential. Finally, as Point J is approached from high packing fractions, the density of vibrational states develops a large excess of low-frequency modes. All of these results suggest that Point J may control behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure
    • …
    corecore